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Abstract. For many species of long-lived organisms, such as trees, survival appears to be
the most critical vital rate affecting population persistence. However, methods commonly used
to quantify tree death, such as relating tree mortality risk solely to diameter growth, almost
certainly do not account for important spatial processes. Our goal in this study was to detect
and, if present, to quantify the relevance of such processes. For this purpose, we examined
purely spatial aspects of mortality for four species, Abies concolor, Abies magnifica, Calocedrus
decurrens, and Pinus lambertiana, in an old-growth conifer forest in the Sierra Nevada of
California, USA. The analysis was performed using data from nine fully mapped long-term
monitoring plots.

In three cases, the results unequivocally supported the inclusion of spatial information in
models used to predict mortality. For Abies concolor, our results suggested that growth rate
may not always adequately capture increased mortality risk due to competition. We also
found evidence of a facilitative effect for this species, with mortality risk decreasing with
proximity to conspecific neighbors. For Pinus lambertiana, mortality risk increased with
density of conspecific neighbors, in keeping with a mechanism of increased pathogen or insect
pressure (i.e., a Janzen-Connell type effect). Finally, we found that models estimating risk of
being crushed were strongly improved by the inclusion of a simple index of spatial proximity.

Not only did spatial indices improve models, those improvements were relevant for
mortality prediction. For P. lambertiana, spatial factors were important for estimation of
mortality risk regardless of growth rate. For A. concolor, although most of the population fell
within spatial conditions in which mortality risk was well described by growth, trees that died
occurred outside those conditions in a disproportionate fashion. Furthermore, as stands of A.
concolor become increasingly dense, such spatial factors are likely to become increasingly
important. In general, models that fail to account for spatial pattern are at risk of failure as
conditions change.

Key words: Abies concolor; Abies magnifica; Calocedrus decurrens; competition; demography; Pinus
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INTRODUCTION

For many species of long-lived organisms, survival

rather than growth or regeneration appears to be the
most critical vital rate affecting population persistence

(sensu Batista et al. 1998). Indeed, this pattern has been
reported for a wide range of species, including a bird of

prey (Katzner et al. 2006), a common pond turtle
(Congdon et al. 1994), a perennial wetland herb (Pino et

al. 2007), and a slow-growing marine invertebrate
(Linares et al. 2007). Thus understanding processes that

influence the survival of these organisms is crucial to
understanding their ecology. However, dying can be a

complex event for such organisms and quantifying their
mortality risk poses a significant challenge.

One common difficulty in quantifying mortality is

incorporating spatial processes. For motile organisms,

such as bear and elk, spatial variation in food

availability or predator populations can have important

effects on survivorship (e.g., Schwartz et al. 2006, Frair

et al. 2007), and in general, population viability is often

strongly influenced by spatial relationships (Morozov

and Li 2007). With sessile organisms such as plants,

spatial effects can be even more direct, since such

organisms can only ‘‘move’’ via births and deaths (e.g.,

Pacala and Deutschman 1995, Bolker et al. 2003). In this

paper, we examine spatial elements of mortality risk by

specifically addressing their role in the mortality of

forest trees.

Trees are long-lived, sessile organisms whose persis-

tence is strongly dependent upon survivorship (Silver-

town et al. 1993, Batista et al. 1998). Moreover, tree

mortality is a key driver of forest development and

change (Hawkes 2000, Keane et al. 2001, Lutz and

Halpern 2006). However, the death of a tree often

involves many interacting factors, including competi-

tion, pathogen and insect attack, mechanical failure,

climate-induced environmental stress, and localized
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edaphic constraints (Franklin et al. 1987, Waring 1987).

Teasing apart the various contributors to a given tree’s

death can be exceedingly difficult and determining their

relative importance even more so. Compounding the

difficulty is the fact that tree mortality, in the absence of

major disturbance, is a relatively infrequent event. Thus

the large number of observations needed to untangle a

process such as tree mortality is rarely available.

One typical approach to predicting tree mortality is to

develop indices that integrate multiple risk factors. For

example, many forest simulation models base mortality

risk on the relationship between short-term tree growth

rate and the probability of mortality. Deaths unrelated

to growth are presumed to be random occurrences

(reviewed in Bugmann 2001, Keane et al. 2001). As

useful as these simplifications are, it is important to

understand what ecological processes they miss and

whether and when such omissions matter.

Growth rate alone almost certainly does not fully

capture the mortality risks defined by spatial arrange-

ment. In terms of tree-to-tree interaction, spatial

elements of tree mortality risk can be broken into four

broad categories: increased risk of stress mortality due

to resource competition; increased risk of pathogen or

insect attack due to the proximity of like neighbors;

increased risk of mechanical damage due to the

proximity of large neighbors; and decreased risk of

mortality due to resource sharing with like neighbors

(i.e., facilitative effect).

The spatial aspects of mortality risk posed by resource

competition have been well explored in temperate

forests. Many studies have shown a relationship between

tree density and mortality (e.g., Eid and Tuhus 2001,

Temesgen and Mitchell 2005, Bravo-Oviedo et al. 2006),

and in theory, diameter growth should respond strongly

to competition, allowing growth rate to describe the

mortality risk. Many forest models (e.g., SORTIE;

Pacala et al. 1996) in fact quantify nonrandom mortality

risk entirely from growth rate as determined by the

competitive environment. Growth rate does respond to

competition (e.g., Biging and Dobbertin 1992), but does

diameter growth completely capture the pressures

represented by competition? If two trees have the same

growth rate in differing competitive environments is the

mortality risk the same? Results from several temperate

forests (Monserud 1976, Umeki 2002, Yang et al. 2003)

suggest the possibility that a competition index might

provide information beyond that found in diameter

growth.

Threats posed by tree diseases and insects also have a

spatial element not captured by growth rate. While slow-

growing trees are often more susceptible to such agents,

many insects and disease-causing organisms are species

or genus specific (Wood et al. 2003). Therefore, in a

manner similar to that described for seedlings by the

Janzen-Connell hypothesis (Janzen 1970), proximity to

conspecific or congeneric neighbors might increase risk

of attack regardless of growth rate. Schenk et al. (1977,

1980), for instance, developed risk indices for Abies

grandis and Pinus contorta that incorporated host

availability and found that the abundance of conspecific

trees increased risk of attack by bark beetles. In tropical

forests, Peters (2003) also found an increase in mortality

risk with the numbers of conspecific neighbors.

The risk of a tree being crushed by neighboring trees

(i.e., when one tree falls on top of another and crushes it)

also has an obvious spatial association at least partly

independent of growth rate: a given tree’s risk of being

crushed should be affected by the number of large trees

close enough to crush it. While soil and topographic

factors also influence the risk of crushing, we should still

be able to discern a purely tree-to-tree-based mecha-

nism. As for facilitative effects, it is certainly possible

that trees can reduce the risk of mortality through root

grafting or mychorrizal associations (e.g., Dickie et al.

2005), though we found no evidence in the literature

suggesting such an effect for the species in our study.

Our goal in this study was to detect and, if present, to

quantify the importance of spatial elements of mortality

risk for forest trees. Specifically, we wished to test for the

importance of spatial processes not captured well by

commonly used methods (e.g., average recent growth).

For this purpose, we used a long-term, spatially explicit

data set from forests in the Sierra Nevada of California,

USA. This data set not only gave us a robust sampling

of mortality from an old-growth forest but also the

ability to model mortality risk for four dominant conifer

species with differing life-history characteristics. For

each species, we developed indices to test for the effect of

spatial risk factors unrelated to growth rate. In each

case, the performance of models that included spatial

indices was compared against those without them. In

addition, because strong model improvement does not

necessarily translate into strong biological effects, we

assessed the importance of these spatial indices in

determining mortality risk across the range of values

observed in the population.

METHODS

Species and sites

We examined four tree species in the Sierra Nevada

conifer forests: Abies concolor (Gord. & Glend.) Lindl.

ex Hildebr. (white fir), Abies magnifica A. Murr. (red fir),

Calocedrus decurrens Torr. (incense cedar), and Pinus

lambertiana Dougl. (sugar pine). Abies concolor and C.

decurrens are ranked as shade tolerant. Abies magnifica

is considered slightly less tolerant than A. concolor, and

P. lambertiana is considered mid-tolerant (Burns and

Honkala 1990). The study sites are located in the Sierra

Nevada conifer forest in Sequoia National Park (1188350

W, 368350 N). Data from nine fully mapped monitoring

plots were used for this study, ranging in elevation from

1600 to 2500 m. The plots were checked annually for

mortality, with growth measured and new recruitment

mapped every five years (for details see Appendix A).
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Indices

Mean recent annual growth rate was calculated for

each tree for each plot by taking the diameter

measurement closest to the start of the given mortality

census period, subtracting the prior diameter, and then

dividing by the number of years between measurements.

If a tree died before the second five-year diameter

measurement, its growth rate was determined from its

diameter at death and the number of years since the last

measurement. Tree size was taken as the diameter

measured at the most recent forest inventory prior to

the census period.

To estimate resource competition, we chose one

simple and one complex index, calculating the index in

a 10-m radius around the subject tree (see Appendix B

for a discussion of the method by which neighborhood

size was chosen). The simple index was a count of the

number of trees. For our more complex measure we

chose the Hegyi index (Biging and Dobbertin 1992),

which takes into account the distance of the competitor

to the subject tree as well as the sizes of the trees:

H ¼
X

j 6¼i

DBHj

DBHi 3ðDistij þ 1Þ ð1Þ

where dbhi (dbh, diameter at breast height measured at

1.37 m above the ground surface) is the diameter of the

subject tree, dbhj is the diameter of a competitor tree,

and Distij is the distance between the subject and

competitor trees. As different species can have different

competitive effects (Canham et al. 2006), we also

calculated a species-weighted Hegyi index in which the

competitive contribution from each competitor was

weighted by relative canopy density (see Appendix B).

Competition indices were calculated for the beginning of

the mortality census period considered (see Full mortal-

ity model development). To correct for edge effects,

competition indices were weighted using an area-

weighted edge correction: for trees that were within 10

m of the plot edge, index values were divided by the

proportion of a 10 m radius circle centered on the tree

that would lie inside the plot boundaries. For example, if

only 30% of the 10 m radius circle centered around a

given tree would be within the plot, the raw index value

for that tree was divided by 0.30.

To estimate increased risk of biotic attack due to like

neighbors, we calculated both density- and distance-

related indices. Density indices included densities of

conspecific and congeneric trees. All density measure-

ments were made in a 10-m radius around the subject

tree and corrected for edge effects using an area-

weighted correction. Distance indices included distance

to nearest conspecific or congeneric neighbors and mean

distance to the nearest three conspecific or congeneric

neighbors. Due to plot size, distance was restricted to a

maximum of 30 m with the index set at 30 m in cases in

which a neighbor was farther away. For mean distances,

if the distances to any of the nearest neighbors were over

30 m, the distance to that neighbor was set at 30 m.

Analyses were also run using 50-m and 100-m maximum

distances with no substantial effect on the results. Edge

effects were corrected using a toroidal edge correction

(Bailey and Gatrell 1995).

Since many tree-killing bark beetles in these forests

generally only attack trees above a certain minimum size

(Wood et al. 2003), we also calculated species- and

genus-specific density and distance indices considering

only susceptible trees (i.e., all trees with a dbh . 12.7

cm, ‘‘pole-sized’’ trees or larger). This definition of

susceptibility is based on the approximate minimum-

sized tree that bark beetle species in these forests would

attack, as determined by reported values (Furniss et al.

1977, Wood et al. 2003). Only susceptible trees were

considered as subject trees or neighbor trees to calculate

a given index. For comparison, we also calculated the

non-species-specific density using only susceptible trees.

To examine the spatial component of mechanical

agents of mortality, we focused on the risks associated

with being crushed by a neighbor. We postulated that

the risk of being crushed would increase with the

number of trees residing nearby that were capable of

crushing the given subject tree. We used two indices. For

a very simple index, we used the same density index

described above for measuring resource competition

(number of trees within a 10-m radius around the tree).

We then developed a more complex crushing index by

counting the number of trees of equal or greater size to

the subject tree that were close enough to crush the

subject tree given their height. Heights were calculated

using allometric equations developed for the model

FACET (Urban et al. 2000), substituting equations for

similar species for those species not described by

FACET. Only pole-size trees or larger, as defined above,

were considered as potential ‘‘crushers.’’

Although we did not develop separate indices to

measure facilitative effects, the indices developed above

serve that purpose already. For example, if a tree were

less likely to die when close to conspecific neighbors,

that would indicate possible facilitation.

Full mortality model development

We used the data from the plots to perform a cohort

study, tracking a population of live trees from one

starting point and recording all the mortalities in that

population over the period considered without regard to

cause of mortality. For A. concolor, C. decurrens, and P.

lambertiana, we chose a census period between 1997 and

2005 and for A. magnifica we chose the period from 1998

to 2005 (see Appendix B for sample sizes and a

description of the manner in which census period was

chosen). We then used the characteristics of each tree at

the start of the period (growth rate, size, and spatial

indices) to estimate the association of those character-

istics with mortality risk. Using plots established in

different years presented a difficulty with regard to the

use of newly recruited trees, which were only recorded
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and mapped every five years. If the start of the census

period fell between measurement periods for a given plot

then only a portion of the newly recruited trees in those

plots would truly have reached breast height (recruited)

by the start of the monitoring period. We addressed this

temporal asynchrony by bootstrapping to estimate
recruitment between measurement intervals. Specifically,

we randomly selected a number of trees equal to the

proportion that should have recruited by the start of the

period assuming a constant recruitment rate, performing

the analysis 100 times and averaging the results (see

Appendix B for details).

Mortality probability was modeled using the logistic

function:

pðxÞ ¼ egðxÞ

1þ egðxÞ ð2Þ

where p(x) is mortality probability and g(x) is a linear
function of predictor variables. For example a model

with growth rate and size as predictors would have g(x)

¼ b0 þ b1 3 growth rate þ b2 3 size, where b0 is the

intercept and b1 and b2 are fitted parameters. As a

shorthand, we will refer to g(x) by listing the included

indices. For example, the size and growth rate model

would be g(growth rate, size). Models were fit using the

lrm function in the Splus 6.2 Design library (Insightful

Corporation, Seattle, Washington, USA).

All models for the full mortality analysis were built on

a base model that included size and mean recent growth,

g(growth rate, size), to account for these variables before
assessing the effect of a given spatial variable. Each of

the spatial indices was added separately to the base

model to generate a set of comparison models (e.g.,

g(growth rate, size, Hegyi index), g(growth rate, size,

local density)), resulting in 11 models for all species

except C. decurrens, which had eight due to the lack of

congenerics. We also performed a separate analysis

considering only pole-sized trees or larger and using the
additional pole size indices described above (see Indices),

resulting in a total of 18 models for all species except C.

decurrens, which had 11. We will refer to this analysis as

the ‘‘pole’’ analysis hereafter, while referring to the

analysis that includes all trees as the ‘‘all-size’’ analysis.

In order to compare the models within each set, we

used Akaike’s information criterion (AIC; Burnham and

Anderson 1998). The AIC values were calculated for

each model as well as AIC difference values (DAIC: the

difference in AIC values between a given model and the

model with the lowest AIC value) and Akaike weights
(wi, a measure of the proportional likelihood that the ith

model is the best model). We also calculated an evidence

ratio, comparing our spatial models with the base

model, where the evidence ratio is wspatial/wbase. The

evidence ratio measures how much stronger the evidence

for one model is compared to another. As a guide, based

upon Burnham and Anderson’s (1998) rules of thumb

for DAIC values, an evidence ratio less than 2.7 would

be considered very little evidence while a value of 7.4

would be considered much stronger evidence. In general,

we considered evidence ratios greater than 5.0 as

reasonable evidence for model improvement.

Although model fitting was not our goal (our goal was

to assess the potential importance of spatial risk factors

not tied to growth rate), we did calculate several fit

statistics as a guide to the adequacy of our models. For

each model we calculated the area under the receiver

operating characteristic curve (ROC), the variance

inflation factor (VIF), and the unweighted sum-of-

squares fit statistic. The ROC is a threshold-independent

measure of model discrimination (ability to distinguish

live and dead trees) in which 0.5 indicates no discrim-

ination, 0.7–,0.8 acceptable discrimination, and 0.8–0.9

excellent discrimination (Hosmer and Lemeshow 2000).

The VIF was used to check for multicollinearity (Neter

et al. 1996). The unweighted sum of squares test was

used as a general measure of fit (see Copas 1989, Hosmer

et al. 1997).

Crush mortality model development

We performed a separate subanalysis for mechanical

mortality using the subset of trees that had been crushed

by other trees. We limited our cause-specific analysis to

this agent because field identification of crushed trees

was obvious and the ultimate cause of the failure certain.

In contrast, most biotic mortality factors can be difficult

to identify and easily missed by field crews (e.g., root

rots belowground and beetle attacks high on the tree

stem are easily overlooked). In short, we examined our

ability to assess the risk of a tree being crushed by

analyzing the differences between those trees that were

crushed and those not over the census period.

In performing this analysis we did not include recent

growth rate, as there was no obvious and direct

mechanism that would relate slow growth of a given

tree to its risk of being crushed by another tree.

Therefore, the following variables were considered for

logistic models of crushing risk: size, local density, and

crushing index. We considered all one- and two-variable

models formed from the combination of these variables

with the only restriction being that crushing index and

local density were never placed in the same model. The

AIC statistics were calculated as for the full mortality

models. For evidence ratios, we compared each model to

a model that included only size, making the g(size)

model the effective base model. Model diagnostics

(ROC, VIF, unweighted sum of squares) were calculated

as for the full mortality models.

Because growth rate was not used as a predictor for

this analysis, there was no need for a re-measurement of

diameter prior to the census period. We were therefore

able to use a longer census period: 1993–2005. We made

no distinction among species, because risk of being

crushed should be relatively independent of species. In

addition, splitting by species would have resulted in

small sample sizes since crush mortality was relatively

rare, with an annual rate over the period of ;0.15%/yr

June 2008 1747SPATIAL ELEMENTS OF MORTALITY RISK



(compared to rates varying between 0.66%/yr and

4.84%/yr for all mortality; Appendix B). Sequoiadendron

giganteum were not considered as subject trees as their

presence in model building tended to result in poor fits,

likely due to their extreme size (mean dbh ¼ 219 cm).

However, Sequoiadendron giganteum were considered

when calculating the crushing index for other species.

The resulting sample (9115 trees, 8957 survivors, 158

crush-related mortalities) was tracked for crushing-

related mortality using plot mortality evaluations.

Newly recruited trees were ignored as these posed no

crushing risk.

RESULTS

Unweighted sum-of-squares analyses and VIF results

generally indicated acceptable fit with no problematic

multicollinearity and never indicated such problems for

the top-ranked models. For potentially the most

problematic case, the relationship between growth rate

and competition, we found that, using linear models,

competition never accounted for more than 12% of the

variance in growth for any species.

Full mortality model analysis

Abies concolor.—The all-size analysis for A. concolor

showed strong evidence of improvement for models with

two types of spatial variables: competition indices and

distance to nearest conspecific or congeneric neighbor

(Table 1). Support for model improvement by adding

either Hegyi index was overwhelming, and support for

model improvement with distance to nearest conspecific

or congeneric neighbors was also very strong. For trees

larger than 12.7 cm (Table 2), pole-sized and larger,

distance to nearest conspecific or congeneric neighbor

still showed strong evidence for model improvement but

the competition index no longer provided any improve-

ment, suggesting that improvements due to the compe-

tition index were restricted to smaller trees. The ROC

results showed acceptable discrimination for all models

(Tables 2 and 3).

Across the full range of variation, the competition

index had a dramatic effect on A. concolor mortality

probability (Fig. 1a), particularly at slow growth rates.

However, the impact of the competition index was most

evident in the extreme cases. When the extremes were

trimmed (i.e., the highest 2.5% and lowest 2.5% of the

values for each independent variable were deleted),

diameter growth had a much stronger effect on most

trees (Fig. 1b).

The mortality probability increased with neighbor

distance, suggesting that, at a given growth rate, A.

concolor were more likely to die when growing farther

from other Abies (Fig. 1c–f). As with the competition

index, the effect was quite strong across the full range of

the variable (Fig. 1c, e). However, growth rate had a

stronger effect on mortality risk than conspecific or

congeneric neighbor distance for the vast majority of the

trees sampled (Fig. 1d, f). In short, neighbor distance

was important primarily at the extremes.

Abies magnifica.—All-size models for A. magnifica

showed no convincing evidence of improvement with the

addition of spatial variables (Table 1). For pole-sized

trees, only distance to the nearest conspecific neighbor

provided any improvement (Table 2), with the best

variable being a pole-specific index. Discrimination was

acceptable for all models (Tables 1 and 2). The mortality

probability for the best model in the pole analysis was

strongly affected by the conspecific neighbor distance at

the extreme ranges, particularly at slow growth, and its

effect remained comparable to growth rate, though

weaker, even for the trimmed ranges (see Appendix C).

Calocedrus decurrens.—Rankings for the all-size

models for C. decurrens showed moderate support for

improvement with the addition of a local density

variable. In contrast, the base model was the best model

for the pole-sized trees (Tables 1 and 2). These results

suggest that improvements were restricted to smaller

trees (i.e., ,12.7 cm dbh). Discrimination was excellent

for all models (Tables 1 and 2). For the best models,

growth rate again had a more pronounced effect than

competition index for the majority of the population

(see Appendix C).

Pinus lambertiana.—The P. lambertiana models

showed strong evidence for model improvement with

the inclusion of conspecific density in the all-size models

(Table 1) and overwhelming evidence for improvement

in the pole analysis. In addition, the pole analysis

showed very strong evidence for model improvement

with the inclusion of distance to nearest conspecific or

congeneric neighbors (Table 2). The ROC values for all

of the all-size models were relatively poor, and none

showed marked improvement with the addition of

spatial variables. In contrast, the pole analysis showed

clear improvement in discrimination with the addition of

spatial variables.

The mortality probability increased with conspecific

or congeneric density and decreased with distance to

conspecific or congeneric neighbors (Fig. 2). For both

the all-size and pole analyses, density resulted in

stronger models than neighbor distance, indicating that

numbers of close neighbors presented a clearer risk than

simple proximity. The increased model improvement

with spatial variables for the pole analysis provided

evidence that spatial factors were more important for

larger trees. Examination of the best-ranked all-tree and

pole analysis models for each type of index (Fig. 2)

demonstrates that spatial variables had a comparable

effect to growth rate even for the trimmed ranges.

Unlike the other species, spatial variables appeared to

have a pronounced effect on mortality probability for P.

lambertiana even at fast growth rates.

Crush-related mortality analysis

A model containing size and crushing index outper-

formed all other models (Table 3). The crushing index
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provided clear improvement to a model that included

tree size only, while density did not appear to offer any

improvement. Overall, the annual probability of being

crushed was low, with the highest possible annual

probability of being crushed only 0.8% for even the

most extreme combination of variables (Fig. 3). Discrim-

ination was relatively poor for all models.

DISCUSSION

Our results demonstrate that the spatial arrangement

of trees provide information about the likelihood of

mortality even after growth-related mortality risk is

taken into account. In other words, tree diameter

growth does not capture all the nonrandom risk factors

associated with tree mortality in temperate forests. In

three cases, P. lambertiana, A. concolor, and the crush

analysis, the results unequivocally support the inclusion

of spatial information in models used to assess mortality

risk. Moreover these improvements lead to relevant

ecological insights.

For P. lambertiana, proximity to conspecific or

congeneric neighbors clearly increased the risk of

mortality. This result was consistent with a mechanism

in which risk of biotic attack, such as that from bark

beetles and root rots, increases in the presence of like

neighbors (Janzen-Connell type effect). Spatial indices

capturing this effect had large impacts on the estimation

of mortality risk regardless of growth rate, for both the

TABLE 1. Model rankings and the area under the receiver operating characteristic curve (ROC) for
full mortality models for trees of all sizes.

Model: g(x) DAIC
AIC
weight

Evidence
ratio ROC

Abies concolor

Hegyi index 0.00 0.64 33 006 047.53 0.788
Hegyi index (species weighted) 1.16 0.36 18 444 430.34 0.788
Distance 3 conspecifics 29.93 0.00 10.47 0.785
Distance conspecific 30.25 0.00 8.90 0.784
Distance 3 congenerics 30.52 0.00 7.78 0.785
Distance congeneric 32.06 0.00 3.60 0.784
Local density 32.18 0.00 3.39 0.779
Conspecific density 34.21 0.00 1.23 0.780
Base model 34.62 0.00 1.00 0.782
Congeneric density 35.06 0.00 0.80 0.780

Abies magnifica

Distance congeneric 0.00 0.26 1.60 0.708
Base model 0.95 0.16 1.00 0.706
Hegyi index (species weighted) 1.74 0.11 0.67 0.706
Hegyi index 1.79 0.10 0.65 0.705
Distance 3 conspecifics 2.69 0.07 0.42 0.713
Congeneric density 2.78 0.06 0.40 0.710
Conspecific density 2.80 0.06 0.40 0.706
Local density 2.86 0.06 0.38 0.707
Distance 3 congenerics 2.91 0.06 0.37 0.707
Distance conspecific 2.92 0.06 0.37 0.707

Calocedrus decurrens

Local density 0.00 0.57 4.88 0.835
Conspecific density 3.07 0.12 1.05 0.824
Base model 3.17 0.12 1.00 0.824
Distance conspecific 4.64 0.06 0.48 0.824
Distance 3 conspecifics 5.14 0.04 0.37 0.824
Hegyi index (species weighted) 5.16 0.04 0.37 0.824
Hegyi index 5.16 0.04 0.37 0.824

Pinus lambertiana

Conspecific density 0.00 0.66 18.05 0.661
Congeneric density 3.35 0.12 3.39 0.653
Distance 3 conspecifics 5.69 0.04 1.05 0.650
Base model 5.79 0.04 1.00 0.647
Distance 3 congenerics 6.12 0.03 0.84 0.649
Distance conspecific 6.15 0.03 0.84 0.649
Local density 6.51 0.03 0.70 0.645
Distance congeneric 6.60 0.02 0.67 0.649
Hegyi index 7.26 0.02 0.48 0.651
Hegyi index (species weighted) 7.36 0.02 0.46 0.651

Notes: All models are built on the base model g(size, growth rate), with the listed spatial variable
added to it. Models are listed in order of AIC rank. The evidence ratio is the ratio of the Akaike
weight of the given model to the base model. Note then that larger evidence ratios suggest better
models. All AIC results shown are derived from the average of 100 trials (see Methods and
Appendix B). The study was conducted in the Sierra Nevada conifer forest, California, USA.
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TABLE 2. Model rankings and the area under the receiver operating characteristic curve (ROC) for
full mortality models for pole-sized or larger trees.

Model: g(x) DAIC AIC weight Evidence ratio ROC

Abies concolor

Distance 3 congenerics (pole) 0.00 0.18 7.78 0.758
Distance conspecific (pole) 0.51 0.14 6.02 0.753
Distance congeneric (pole) 0.94 0.11 4.87 0.755
Distance conspecific 1.14 0.10 4.40 0.749
Distance 3 congenerics 1.54 0.08 3.60 0.750
Distance 3 conspecifics (pole) 1.60 0.08 3.49 0.753
Distance 3 conspecifics 1.69 0.08 3.34 0.748
Distance congeneric 1.74 0.07 3.27 0.753
Local density (pole) 3.16 0.04 1.60 0.747
Base model 4.10 0.02 1.00 0.746
Local density 4.17 0.02 0.97 0.746
Congeneric density (pole) 4.75 0.02 0.72 0.746
Conspecific density (pole) 4.98 0.01 0.65 0.747
Congeneric density 5.08 0.01 0.61 0.746
Conspecific density 5.42 0.01 0.52 0.746
Hegyi index 5.84 0.01 0.42 0.745
Hegyi index (species weighted) 6.08 0.01 0.37 0.745

Abies magnifica

Distance conspecific (pole) 0.00 0.21 2.96 0.754
Distance 3 conspecifics 1.76 0.09 1.23 0.749
Distance 3 conspecifics (pole) 1.99 0.08 1.09 0.750
Base model 2.17 0.07 1.00 0.749
Hegyi index 2.17 0.07 1.00 0.759
Distance conspecific 2.25 0.07 0.96 0.748
Hegyi index (species weighted) 2.26 0.07 0.95 0.759
Conspecific density 2.31 0.07 0.93 0.753
Distance 3 congenerics 3.34 0.04 0.56 0.750
Congeneric density 3.50 0.04 0.52 0.751
Local density 3.62 0.03 0.49 0.754
Distance 3 congenerics (pole) 3.88 0.03 0.42 0.751
Distance congeneric 3.97 0.03 0.41 0.745
Distance congeneric (pole) 3.98 0.03 0.40 0.745
Conspecific density (pole) 4.14 0.03 0.37 0.750
Congeneric density (pole) 4.16 0.03 0.37 0.749
Local density (pole) 4.17 0.03 0.37 0.750

Calocedrus decurrens

Base model 0.00 0.19 1.00 0.816
Distance 3 conspecifics 1.12 0.11 0.57 0.819
Conspecific density 1.51 0.09 0.47 0.816
Conspecific density (pole) 1.65 0.08 0.44 0.816
Local density 1.73 0.08 0.42 0.816
Hegyi index (species weighted) 1.87 0.08 0.39 0.817
Distance conspecific 1.88 0.08 0.39 0.818
Local density (pole) 1.94 0.07 0.38 0.816
Distance 3 conspecifics (pole) 1.94 0.07 0.38 0.816
Hegyi index 1.95 0.07 0.38 0.817
Distance conspecific (pole) 1.97 0.07 0.37 0.817

Pinus lambertiana

Conspecific density (pole) 0.00 0.46 40 702.54 0.736
Conspecific density 1.00 0.28 24 702.13 0.731
Congeneric density (pole) 1.94 0.18 15 455.33 0.730
Congeneric density 3.63 0.08 6630.22 0.719
Distance 3 conspecifics (pole) 12.99 0.00 61.43 0.711
Distance 3 congenerics (pole) 15.67 0.00 16.13 0.700
Distance 3 conspecifics 16.50 0.00 10.63 0.689
Distance 3 congenerics 17.63 0.00 6.04 0.686
Distance conspecific (pole) 17.96 0.00 5.13 0.695
Distance congeneric (pole) 19.87 0.00 1.98 0.686
Distance conspecific 20.37 0.00 1.54 0.677
Distance congeneric 20.78 0.00 1.25 0.675
Base model 21.23 0.00 1.00 0.664
Hegyi index 21.73 0.00 0.78 0.677
Hegyi index (species weighted) 21.78 0.00 0.76 0.677
Local density 22.51 0.00 0.53 0.665
Local density (pole) 23.21 0.00 0.37 0.664

Notes:All models are built on the base model, g(size, growth rate), with the listed spatial variable
added to it. Models are listed in order of AIC rank.
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full and the trimmed population, with spatial indices for

pole-sized trees improving model discrimination from

poor to acceptable (Fig. 2, Table 2). In short, variables

beyond growth rate were necessary to adequately assess

mortality risk for this species.

For A. concolor, the addition of a competition index

to a model with size and diameter growth rate strongly

improved mortality risk estimation. This result suggests

that growth rate may not always fully capture the risk

posed by resource competition. In addition, mortality

risk for this species decreased with proximity to like

neighbors, a result consistent with a facilitative effect. In

both instances, spatial indices had the strongest impact

at the extremes of the spatial index and at the slowest

growth rates (Fig. 1).

Although the majority of the A. concolor population

was in circumstances in which growth rate alone

captured most of the risk of mortality (Fig. 1), trees

that died occurred outside that common range of

conditions in a disproportionate fashion. For example,

while only 2.5% of the population had a Hegyi index

higher than the maximum of the trimmed range (Fig. 1),

11.1% of trees that died had a Hegyi index higher than

that range. Therefore, if population density increased, A.

concolor mortality would likely increase in a nonlinear

fashion. This concern is far from academic because fire

exclusion in Sierran conifer forests can lead to increases

in tree density, with A. concolor comprising a large part

of that increase (Parsons and DeBenedetti 1979, Ansley

and Battles 1998). Such an effect would be entirely

missed by a growth-rate-only model, even if that model

worked quite well in less competitive conditions. In

essence, to understand mortality processes and to

evaluate how they will be affected by environmental

changes, we need to understand population dynamics

even at the extremes.

For the crushed tree analysis, our results indicate that

mechanical damage cannot be presumed to be entirely

random. The addition of a simple spatial index

dramatically improved model performance over a model

with tree size alone. Although mechanical damage is a

relatively small contributor to overall forest mortality,

the inclusion of spatial information still improved our

understanding of its operation.

Our results also provide guidance in understanding

when a particular mortality mechanism may not be

adequately captured by growth rate. Although this study

was largely phenomenological, we can still make

biologically informed observations about why different

species showed different sensitivity to spatial indices. For

instance, indices designed to reflect resource competition

improved mortality models for the smaller individuals of

shade-tolerant species such as A. concolor and to a lesser

extent C. decurrens. As shade-tolerant trees (Niinemets

and Valladares 2006), both species can persist in

subcanopy environments and presumably survive long

periods of slow growth, perhaps resulting in less

predictive power for growth rate in the most extreme

conditions. Put simply, in very competitive environments

growth rate may level off to some minimum, but

increased competition would still affect resource avail-

ability and therefore likelihood of mortality.

We can also see from these results that mortality risk

increased in the presence of conspecific neighbors for P.

lambertiana but not the other three species. The

explanation may lie in the specific relationships these

species have with biotic mortality agents. For instance,

P. lambertiana are susceptible to attack by biotic agents,

including species-specific root rots (Rizzo and Slaughter

2001) and beetles that release aggregation pheromones

(Wood 1982), that are likely to spread more vigorously

in areas where densities of P. lambertiana are high. Pinus

lambertiana are also under pressure from the nonnative

pathogen Cronartium ribicola that attacks only five-

needled pines (van Mantgem et al. 2004). While the

complicated two-host life cycle of the pathogen does not

involve tree-to-tree transmission (Edmonds et al. 2000),

abundance of one host might still have an effect on

disease prevalence and tree mortality. In contrast, C.

decurrens does not have any strong tree-damaging

insects that kill it in these forests (North et al. 2002),

and infection by root rots appeared to be uncommon in

these plots (A. Das, personal observation). For A.

concolor and A. magnifica, the major tree-killing insect,

Scolytus ventralis (Wood et al. 2003), tends to attack

already weakened trees and is not known to have an

aggregating pheromone (Macias-Samano et al. 1998).

Furthermore, though fir species do suffer from Hetero-

basidon annosum root rot infections, the disease is more

frequently a heart rot than a cambial rot in these species

(Slaughter et al. 1991, Wood et al. 2003), perhaps

dampening the effect of root rot centers. For all three of

these species (A. concolor, A. magnifica, C. decurrens),

therefore, the lack of obvious increased mortality risk

from closer conspecific neighbors is understandable.

However, the apparent facilitative effect indicated by

the decreased mortality risk from proximity to conspe-

cific neighbors for A. concolor and possibly A. magnifica

was surprising. All indications prior to our analysis

suggested these species should either be at increased risk

with increased conspecific density (due to various

diseases) or perhaps show no noticeable relationship.

TABLE 3. Crush mortality model Akaike information criterion
(AIC) rankings and the area under the receiver operating
characteristic curve (ROC) values.

Model: g(x) DAIC
AIC
weight

Evidence
ratio ROC

g(size, crush index) 0.00 1.00 2623.39 0.680
g(size) 15.74 0.00 1.00 0.640
g(size, local density) 17.47 0.00 0.42 0.643
g(crush index) 29.24 0.00 0.00 0.623
g(local density) 70.46 0.00 0.00 0.504

Notes: See Methods for variable explanations. Models are
listed in order of AIC rank. The evidence ratio is the ratio of the
Akaike weight of the given model to the g(size) model.
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FIG. 1. Mortality probability plots for three Abies concolor models with size held constant at the mean value. All mortality
probabilities have been normalized to an annual time step. (a, c, e) Probability surfaces for the full range of values found in the
population for each variable. (b, d, f ) Probability surfaces for the range of values of each variable found in the population after the
highest 2.5% and the lowest 2.5% values have been trimmed. (a, b) Hegyi index vs. growth rate for the all-sizes model; (c, d) mean
distance to nearest three conspecific neighbors vs. growth rate for the all-sizes model; (e, f ) mean distance to nearest three
congeneric neighbors vs. growth rate for pole-sized and larger trees. The study was conducted in the Sierra Nevada conifer forest,
California, USA.

ADRIAN DAS ET AL.1752 Ecology, Vol. 89, No. 6



FIG. 2. Mortality probability plots for three Pinus lambertiana models with size held constant at the mean value. All mortality
probabilities have been normalized to an annual time step. (a, c, e) Probability surfaces for the full range of values found in the
population for each variable. (b, d, f ) Probability surfaces for the range of values for each variable found in the population after the
highest 2.5% and the lowest 2.5% values have been trimmed. (a,b) Conspecific density vs. growth rate for the all-sizes model; (c,d)
conspecific density vs. growth rate for pole-sized and larger trees; (e,f ) mean distance to nearest three conspecific neighbors vs.
growth rate for pole-sized and larger trees. Density was measured as the number of trees within a 10-m radius around the subject
tree.
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One potential explanation is that the sharing of

resources through mycorrhizae or root grafting over-

whelms any increased risk of biotic attack in a manner

not fully captured by growth rate. Mycorrhizae can

offset the effects of competition (Perry et al. 1989,

Dickie et al. 2005), and stand composition can affect

fungal community structure (DeBellis et al. 2006).

Perhaps closely spaced firs result in more beneficial sets

of mycorrhizal associations. Regardless of the cause, the

effect merits further study given the prevalence of Abies

in these forests.

It is also not immediately clear why improvement due

to spatial indices was more equivocal for C. decurrens

and A. magnifica. For C. decurrens it may be the paucity

of strong biotic mortality agents (North et al. 2002) or

that growth rate more adequately captured competition.

For A. magnifica, it may be that, relative to A. concolor,

trees of this species were on average in less competitive

environments and in closer proximity to conspecifics

(i.e., there were not enough trees in extreme environ-

ments for our analysis to capture the effect).

Overall, our analyses suggest that by more adequately

capturing underlying processes we may be able to gain a

greater understanding of how forests will change in

response to stressors. Processes left unquantified may

well become more important as conditions change, and

models that fail to capture these processes will begin to

fail in response. For instance, mortality routines that

represent competitive effects entirely via growth rate

might be inadequate for a species such as A. concolor in

circumstances of high competition. More broadly, many

forest gap models predict rapid, large-scale diebacks

with changing climate, but such predictions are unlikely

to be accurate because the mechanisms underlying the

mortality functions are too simplistic (Loehle and

LeBlanc 1996). Of course adding model complexity

should be a guided process, since complex models can be

difficult to interpret and inflate the risk of modeling

errors (Pacala et al. 1996). For instance, for the forests in

this study, stands that contain a significant component

of A. concolor and P. lambertiana are likely to require

spatial information for robust modeling while those

dominated by C. decurrens and A. magnifica may not.

We have shown for trees that the quantification of

spatial relationships has the potential to improve our

understanding of mortality risk, and it is reasonable to

expect similar results for other long-lived organisms. But

mortality is a temporal as well as a spatial process. In

this study, because we only had periodic inventories, we

used a fairly simple, short-term growth metric. For trees,

we know that examining more detailed temporal indices

(e.g., Pedersen 1998, Bigler and Bugmann 2003, 2004,

Bigler et al. 2004, Suarez et al. 2004, Das et al. 2007) can

also improve mortality prediction. For example we

found that for P. lambertiana, including long-term

growth indices improved our ability to distinguish

between live and dead trees by 12.4% (Das et al.

2007). Therefore, we expect that the inclusion of these

temporal indices in combination with spatial indices

would further improve our overall fits. In general, our

results indicate that there is much room for improving

our ability to quantify unrecognized or underappreciat-

ed mortality processes.

We further suggest that the implications of our

analyses have relevance beyond tree population dynam-

ics and forest ecosystems. For example, we have

FIG. 3. Probability of being crushed for the top-ranked model (Table 3). Values have been normalized to an annual time step.
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demonstrated that mortality at the extremes can

potentially have a disproportionate effect on population

dynamics with changing circumstances and that such an

effect could easily be missed with an approach that is too

reliant on capturing majority responses. Given the pace

of ecological change observed in many ecosystems

(sensu Vitousek et al. 1997), it becomes ever more likely

that long-lived organisms will encounter extreme condi-

tions in their lifetimes. More generally, since we know

that survivorship is critical for projecting populations

for long-lived species, quantifying their mortality

processes better, both spatially and temporally, will be

critical for understanding how such organisms will be

affected by environmental change.
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APPENDIX A

Detailed plot and site description (Ecological Archives E089-104-A1).

APPENDIX B

Methodological details: defining neighborhood size, creating a species-specific competition index, selecting the census period,
and accounting for asynchronous recruitment (Ecological Archives E089-104-A2).

APPENDIX C

Mortality probability figures for the best models for Abies magnifica and Calocedrus decurrens (Ecological Archives E089-104-
A3).
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